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Abstract 

Evolutionary learning methods have been 
found to be useful in several areas in the 
development of intelligent robots. In the 
approach described here, evolutionary 
algorithms are used to explore alternative 
robot behaviors within a simulation model as 
a way of reducing the overall knowledge 
engineering effort. This paper presents some 
initial results of applying the SAMUEL 
genetic learning system to a collision 
avoidance and navigation task for mobile 
robots. 

1   INTRODUCTION 
This is a progress report on our efforts to design 
intelligent robots for complex environments. The sort of 
applications we have in mind include sentry robots, 
autonomous delivery vehicles, undersea surveillance 
vehicles, and automated warehouse robots. In particular, 
we are investigating issues relating to machine learning, 
using multiple mobile robots to perform tasks such as 
playing hide-and-seek, tag, or competing to find hidden 
objects. 

Given the wide range of tasks in the area of robotics and 
learning, it may be helpful to briefly describe the flavor 
of our research. We begin by stating the orientation and 
motivation for our work, the kinds of tasks we chose to 
focus on, and our assumptions about what background 
knowledge is available to the learning system. While we 
make no claims that this research focus is the only 
reasonable approach, we are confident that this approach 
will provide a significant contribution to the 
development of robust, autonomous robots. 

1.1     RESEARCH ORIENTATION 

At one extreme, traditional robotics research assumes an 
engineering approach in which all aspects of the robot's 
behavior are pre-programmed. This approach suffers 
from the requirement of intensive human analysis of the 
robot and its environment, and is primarily useful in 
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completely controlled and static task environments. At 
another extreme, researchers interested in Artificial Life 
seek to develop intelligent robots with minimal 
dependence on models provided by human designers. 
This is a very interesting approach with great promise for 
the long term. We take a middle ground in our research. 
From a practical perspective, machine learning can be 
justified by reducing the overall development cost for 
intelligent systems. This suggests an approach that treats 
knowledge acquisition for an intelligent autonomous 
system as a cooperative effort between the human 
knowledge engineer and the robot itself. We seek 
machine learning approaches that shift more of the 
burden to the robot and thereby reduce the human 
knowledge engineering costs. In contrast to research 
paradigms that stipulate that the system must learn its 
behaviors tabula rasa, we believe that the optimal trade- 
off between human engineering effort and machine 
learning effort will usually require that the learning 
system be given whatever level of knowledge can be 
easily provided by the designer. However, the cost of 
manual knowledge engineering and the inherent 
uncertainties in the task environment both imply that 
some knowledge acquisition is better left to the robot 
itself. 

1.2     TASK ENVIRONMENTS AND KNOWLEDGE 
REPRESENTATION 

Much traditional research on robot learning assumes a 
closed world model, in which only changes made by the 
learning agent affect the environment. For robots that 
need to interact with other agents, this is clearly an 
unwarranted assumption. Therefore, we typically select 
learning tasks that involve other agents operating in the 
learning agent's environment. We generally assume that 
the learning agent has no access to a predictive model of 
other agents in the environment. The need to interact 
with other competitive or cooperating agents motivates 
our preference for learning reactive behaviors over 
deliberative planning. Planning generally requires a 
good domain model, and given our presumed lack of 
knowledge about the other agents in the environment, we 
have chosen to focus on learning reactive rules. Our 
initial experiments, described below, involve learning 
rules  that  map  current  sensor readings   to  actions. 
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However, it should be emphasized that learning reactive 
rules does not necessarily imply a commitment to a 
simple sensor-to-action level of reasoning. For example, 
one might learn "reactive" rules that embody high-level 
control knowledge, such as: 

IF   situation = danger    AND   mission = critical 

THEN perform high-risk-maneuver 
IF   situation = danger    AND   mission < critical 

THEN perform low-risk-maneuver 

IF... 

Our approach is expected to scale up quite naturally to 
these forms of rules. One could easily imagine a 
hierarchy of such rule sets, so that the actions such as 
"perform high-risk-maneuver" would itself be 
implements as a set of learned reactive rules. 

13     BACKGROUND KNOWLEDGE 

Different learning methods assume different levels of 
background knowledge. For example, explanation-based 
learning methods have many advantages if a strong 
domain model is available. Our research generally 
focuses on what can be learned in the absence of such a 
model, motivated by the recognition that an autonomous 
robot will always face at least some aspects of its 
environment for which a strong model is not yet 
available. 

Despite the lack of a strong model, we do assume that 
some useful knowledge is usually available in the form 
of heuristic rules or advice that can be used in initialize 
the learning system. Consequently, we have adopted a 
rule-based knowledge representation that facilitates the 
specification of heuristic strategies, as well as the 
interpretation and automatic refinement of learned 
strategies. 
In many practical cases it is necessary to constrain the 
exploration to avoid physical harm to the robot or to the 
environment. Our learning systems permit the user to 
specify fixed rules that either require or forbid the robot 
to perform certain actions in specified situations. 

It is somewhat fashionable to express misgivings about 
learning under simulations, since simulation models used 
in AI studies often fail to reflect the complexities, noise, 
and errors that arise in real sensors and actuators 
operating in the real world. Furthermore, traditional AI 
research usually assumes that the inputs have already 
been correctly translated from analog signals (e.g., sonar, 
infra-red, etc.) to symbols (e.g., "door-is-open"). In 
response to such shortcomings, some researchers argue 
for the development of adaptive robots that evolve 
behaviors without using a pre-specified model of the 
world (Brooks, 1992). Here again, we prefer a middle 
ground, assuming the existence of a limited fidelity 
simulation model of the robot and its environment. This 
is consistent with the view that the knowledge 
acquisition task for autonomous robots be viewed as a 
cooperative effort between the robot designers and the 
robot itself. Some relevant knowledge will be known in 

great detail to the designer, for example, the size and 
weight of the robot, the characteristics of its sensors and 
effectors, and at least some of the physics of the task 
environment. The robot should have access to any such 
knowledge that the designer can easily provide. This is 
likely to include a quantitative simulation model of the 
robot and its environment. It should be noted that some 
robot manufacturers already provide sophisticated 
simulation models of the robot in order to aid the 
development of control software. We see no reason to 
deny this resource to the learning robot itself. 

2   APPROACH 
The approach to learning behaviors for robots described 
here reflects a particular methodology for learning via a 
simulation model. The motivation is that making 
mistakes on real systems may be costly or dangerous. In 
addition, time constraints might limit the number of 
experiences during learning in the real world, while in 
many cases, the simulation model can be made to run 
faster than real time. Since learning may require 
experimenting with behaviors that might occasionally 
produce unacceptable results if applied to the real world, 
or might require too much time in the real environment, 
we assume that hypothetical behaviors will be evaluated 
in a simulation model (the off-line system). As 
illustrated in Fig. 1, the current best behavior can be 
placed in the on-line execution system, while learning 
continues in the off-line system (Grefenstette and 
Ramsey, 1992). 
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Figure 1: Learning from a Simulation Model 

The expectation is that behaviors learned in limited        S 
fidelity simulations will be useful in the operational D 
environment. Previous studies have illustrated that D 
knowledge learned under simulation is robust and might 
be applicable to the real world if the simulation is more 
general (i.e. has more noise, more varied conditions, etc.) 
than the real world environment (Ramsey, Schultz and 
Grefenstette, 1990). Where this is not possible, it is 
important to identify the differences between the 
simulation and the world and measure the effect upon the 
learning process. / or 
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The next section very briefly explains the learning 
algorithm (and gives pointers to where more extensive 
documentation can be found). After that, the actual 
robot is described. Then we describe the simulation of 
the robot. Our current learning task is explained, 
followed by a description of some early experimental 
results. 

2.1     EVOLUTIONARY LEARNING 

The field of robotics offers an endless supply of difficult 
problems, requiring an equally impressive array of 
methods for their solution. One class of methods that has 
shown its utility on a number of relevant problems is 
called Evolutionary Computation (De Jong and Spears, 
1993). This term applies to computational methods that 
incorporate principles from biological population 
genetics to perform search, optimization, and machine 
learning, and includes a variety of specific formulations 
with names such as genetic algorithms, evolutionary 
programming, evolution strategies, and genetic 
programming. Evolutionary methods have found 
applications that span the range of architectures for 
intelligent robotics. For example, evolutionary 
algorithms have been used to learn rule sets for rule- 
based autonomous agents (Grefenstette, Ramsey and 
Schultz, 1990), topologies and weights for neural nets for 
robotic control (Whitley et al, 1993; Yamauchi, 1994), 
fuzzy logic control systems (Karr, 1991), programs for 
LISP-contxolled robots (Koza, 1992), and rules for 
behavior-based robots (Dorigo and Schnepf, 1993). 

In our approach evolutionary algorithms are used to 
explore alternative robot behaviors within a simulation 
model as a way of reducing the overall knowledge 
engineering effort. The remainder of this paper will 
focus on the SAMUEL evolutionary learning system 
being developed at NRL (Grefenstette et al., 1990) and 
will present initial results of applying the SAMUEL 
system to a collision avoidance and navigation task for 
mobile robots. In SAMUEL, the population is composed 
of candidate behaviors for solving the task. SAMUEL 
evaluates the candidate behaviors by testing them in a 
simulated environment, here a simulation of the robot 
and its environment. Based on the behaviors' overall 
performance in this environment, genetic and other 
operators are applied to improve the performance of the 
population of behaviors. One cycle of testing all of the 
competing behaviors is referred to as a generation, and is 
repeated until a good behavior is evolved. 

3   EXPERIMENTS 
We have been developing this approach at NRL for the 
past several years, but previous studies have been limited 
to simulated environments. This section describes some 
initial results with real robots. These initial results are 
encouraging, and support the expectation that we will 
able to scale up our approach to more challenging, 
multi-agent tasks. 

3.1 ROBOT PLATFORM 

In these experiments, a Nomadic Technologies, Inc. 
Nomad 200 robot was used. The robot's drive system, 
which is housed in the base, uses three synchronized 
wheels controlled by two motors, one driving the rotation 
of all three wheels (translation of the robot) and the other 
controlling the steering of all three wheels. A third 
motor in the base controls the rotation of a turret that sits 
on top of the base, although in these experiments, the 
turret always pointed in the direction of steering. 

Twenty tactile sensors are arranged in two offset rings 
around the base. The turret contains three sensor 
systems. A set of 16 sonar sensors, equally spaced in a 
ring around the turret, provide range data from 6 inches 
to a maximum of 240 inches. Each sonar cell has a beam 
width of approximately 22.5 degrees. The turret also 
contains a ring of 16 active infrared sensors. Using a 
reflective intensity based system, these sensors give an 
approximate measurement of range from 0 to 24 inches. 

The robot has a two-dimensional structured-light range- 
finding system, but this sensor is not used in these 
experiments and is not described further. The robot 
contains an 80486 processor running at 66 megahertz, a 
separate microprocessor for the sensors and a separate 
motor controller. Currently, the processor runs the DOS 
operating system. 

The robot can be controlled either from software running 
on-board the robot's processor, or from a program 
running on a host computer via radio modem. In both 
cases, the programmer uses an identical set of library 
routines which enable the programmer to both access the 
sensors and give commands to control the robot. In these 
experiments, the robot is controlled by giving it velocity 
mode commands; that is, at each decision step, 
translation and rotation rates are specified for the wheels, 
and a rotation rate is specified for the turret. These 
commands are given via a program running on a Unix 
workstation. 

3.2 ROBOT SIMULATION 

Learning is accomplished off-line using a simulation of 
the robot. The robot simulation uses the same C 
language library interface that is used to control the 
actual robot, so the simulation is the same as the real 
robot from a programming point of view. However, 
there are (as expected) significant differences between 
the robot simulation and the real world robot. Here, we 
point out some of the significant differences that affect 
the learning process. 

In the robot simulation, both the sonar and the infrared 
sensors can be set to properly model beam width (the 
width of the beam is adjustable in the simulation) or they 
can be set to do simple ray tracing (i.e., an object is only 
detected if it intersects with the ray drawn along the 
direction the sensor is pointing). This has the advantage 
of being significantly faster to simulate. In these 
experiments, the ray tracing method is used for both the 



sonar and the infrared. The effect on learning seems to 
be that the learned behaviors are more cautious since, 
during learning, the sonar using ray tracing appears very 
noisy. 

In the real robot, the tactile sensors require a certain 
amount of force to activate them. However, in the 
simulation, a collision with an object always results in an 
activation of the tactile sensor. This difference has no 
direct effect on learning, but it does effect the testing of 
the final behaviors on the real robot. 

In the real world, wheel slippage and irregularities of the 
floor result in errors in dead reckoning (i.e., determining 
the robot's position). Although the simulator has 
parameters to model simple slippage of the wheels, we 
set the simulation to not model slippage. The resulting 
simulation has perfect location information from the 
integrating of its velocity over time. This does not effect 
these experiments due to the relatively short distances 
traversed. 

Another difference lies in the time lags associated with 
the real robot being controlled by a remote host. Getting 
the sensor values from the robot to the host, and the 
action from the host back to the robot, takes a certain 
amount of time that is not accurately simulated. This 
time delay generally results in poorer performance of the 
behaviors in the real world since the time from the 
stimulus to the response differs from that experienced in 
the simulation. In future experiments, the time lag will 
be more accurately modeled. 

3.3     PERFORMANCE TASK 

The task to be performed by the robot, for which it must 
learn a suitable reactive behavior, is to navigate through 
a room from a given start position to within a certain 
radius of a given goal location, while avoiding collisions 
with obstacles randomly placed in the room. Since the 
robot does not have a global map of the room, this is not 
a path planning problem, but one of local navigation and 
collision avoidance. The learning problem is to evolve a 
behavior represented as a set of stimulus-response rules 
that map current sensor state into velocity mode 
commands for the robot to execute. The decision rate is 
approximately 1 hertz. The robot is given a limited 
amount of time to reach the goal. 

For this task, the learning algorithm is not directly 
presented with the 52 individual sensor readings or the 
integrated robot position, but the algorithm is instead 
given the following virtual sensor information: 

Forward_sonar. The minimum value returned by the 
three forward facing sonars. 

Rear_sonar. The minimum value of the three rear facing 
sonars. 

Leftjonar: The minimum value returned by the five left 
facing sonars. 

Rightsonar. The minimum value returned by the five 
right facing sonars. 

The infrared is handled is an identical fashion, with four 
sensors defined, forwardjr, rearjr, leftjr, and right Jr. 
In addition, the following virtual sensors are defined for 
the learning algorithm to use: 

Time:  The current decision time step. 

Speed:  The current translation rate of the robot. 

Range:  The range in inches to the goal position. 

Bearing: The relative bearing in degrees to the goal 
position. 

Given these sensors, the resulting behavior must, at each 
decision step, produce two actions: a translation rate for 
the robot which is between -1 and 5 inches per second, 
and a turning rate between -40 and 40 degrees per 
second. 

For these experiments, the starting position and the goal 
position do not change. However, with each trial 
presented to the robot during learning, the obstacles are 
placed in different positions. There are two sizes of 
obstacles placed in the room, one slightly smaller than 
the diameter of the robot, and the other larger than the 
diameter of the robot. 

3.4     RESULTS 

For the experiment reported here, the simulated 24 by 30 
foot room contained between 5 and 10 obstacles, each 
obstacle randomly chosen to be either 1.5 or 2.5 feet on a 
side. The obstacles were placed somewhat randomly: 
Five slightly overlapping regions in the room were 
defined roughly corresponding to the North-East, South- 
East, North-West and South-West sections of the room, 
with another region defined for the center of the room. 
Each of the five regions had either one or two of the 
obstacles placed randomly within its boundaries. This 
arrangement guarantees that a solution exists, yet forces 
the robot to have to navigate around several boxes. Each 
trial begins with a different configuration of the obstacles 
in the room. The robot was given 80 decision time steps 
to cross the room to the goal position. 

The initial heterogeneous population (Schultz and 
Grefenstette, 1990) consisted of a variety of rule sets 
from different sources. This included a combination of 
manually (human) generated rules sets and automatically 
generated variants of those rules. The best of these 
initial rule sets could successfully reach the goal 72.5 
percent of the time in simulation, while the worst of them 
would never reach the goal. The population size was 50 
rule sets. Each rule set was evaluated on 20 trials to 
determine its fitness, which was defined to be the average 
of the performance measure over the 20 trials. The 
system was run for 50 generations. 



After every five generations, the best 5 rules sets (based 
on the average performance measure) were tested on 50 
random trials to see which could complete the task the 
greatest number of times. The best performing rule set 
was then evaluated on another 200 trials and this value is 
plotted in Fig. 2. 
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Figure 2: Learning the Navigation Task. 

As seen in this figure, the best performance behavior 
could complete the task 93.5 percent of the time in the 
simulated environment. After the experiment was 
completed, the best rule set generated during the 
experiment (obtained in generation 40) was tested on the 
real robot. In 28 runs, the robot succeeded 24 times, a 
performance level of 86 percent. 

4   FUTURE DIRECTIONS 
We expect to scale up this method to multi-robot tasks, 
including competitive tasks such as playing tag, pursuit 
and evasion games. In addition, we will continue to 
explore ways on speeding the learning process by 
including domain-specific biases in the evolutionary 
learning method (Grefenstette, 1987). Here, we outline 
specific extensions used for our robot navigation 
problem. 

• Choice of Search Space and Representation. The first 
choice the user of an evolutionary algorithm needs to 
make is the choice of the search space, along with an 
appropriate representation. This choice clearly reflects 
the trade-ofis between human and machine effort. For 
example, if the choice is to search the space of all 
mappings between the set of all possible sensor readings 
(digitized to greatest possible resolution) to the set of all 
possible actuator commands, this clearly places the 
entire burden of knowledge acquisition on the learning 
system. A more reasonable trade-off might be to process 
the raw sensor readings into a set of virtual sensors and 

to provide a set of behaviors for the robot, leaving the 
task of learning the mappings between these much more 
constrained sets. If the designer can specify the desired 
behavior to within a set of numeric parameters, then 
evolutionary algorithms can be used to search the space 
of parameters for the most desirable values. 

In the SAMUEL learning system, the representation of a 
behavior is a set of stimulus-response rules. The left 
hand sides of the rules are matched against the sensor 
state of the robot, and the right hand sides of the rules 
specify the action the robot is to take. Behaviors are 
evaluated in a production system interpreter that 
interacts with the robot (either real or simulated). Here 
is an example of part of a rule set 

IF   front_sonar < 30   AND   bearing > 10   THENturn = 20 

IF   front_ir<5    THEN   speed = -10 

IF   ... 

Each such rule plays the role of a gene, with a set of such 
rules, or behavior, treated as a candidate solution to the 
problem (navigation in this case). 

In each decision cycle, the interpreter reads the current 
state of the sensors to find rules that match, resolves 
conflicts to determine one rule to fire based on previously 
observed utilities of rules, and then fires the rule by 
passing back to the robot the action to be performed (for 
example a velocity mode command). This cycle is 
repeated until the task is accomplished or failure occurs. 

In SAMUEL, the user can further limit the search space 
by defining a set of constraints in the form of rules that 
specify conditions under which certain actions are either 
forbidden or required (Grefenstette and Cobb, 1994). 
Constraints are intended to limit the robot's actions 
within physically safe parameters, but still allow freedom 
to explore a large set of alternative strategies 
(Grefenstette, 1992). 

• Initial Population. Evolutionary algorithms often 
begin with candidate solutions selected at random from 
the search space. Often, the approach can be sped up by 
the use of heuristics to select the starting population. 
This must be done with care, however, since a lack of 
sufficient diversity in the initial population is almost 
guaranteed to produced premature convergence to 
suboptimal solutions. 

In SAMUEL, the rule representation was designed to 
encourage the user to include heuristic strategies in the 
initial population (Schultz and Grefenstette, 1990). In 
fact, for many complex robotic tasks, it is unlikely that 
the system will be able to evolve solutions without some 
initial heuristics. For example, if the task is to track a 
moving target, the robot is unlikely to perform the task at 
all given a set of random rules of the form shown above. 
We are exploring several approaches for exploiting 
heuristic knowledge, including the automatic generation 
of several variants from a user-generated rule set Again, 
this raises the issue of trade-ofis between the effort of 
specifying good initial rules and the effort of engineering 



the search space to include only plausible solutions to the 
task. The optimal trade-off will vary from task to task. 

• Fitness Function. The fitness function is the main 
mechanism for expressing bias in the genetic learning 
approach. Two important issues must be addressed. 
First, the fitness function should accurately reflect the 
desired performance on the task. Evolutionary 
algorithms are highly opportunistic optimizers and may 
produce surprising results if the fitness function rewards 
some behavior that the system designer does not want. 
Evolutionary algorithms may also exploit unexpected 
features of the simulation model to maximize 
performance. Of course, this implies that the model 
should accurately reflect the conditions in the target 
environment. To the extent that this is not possible, our 
studies (Ramsey et al., 1990) have shown that it is still 
possible to learn from limited-fidelity simulations that err 
on the side of difficulty (e.g., have more noisy sensors 
that the real robots). In such cases, the learning time 
increases, but so does the robustness of the learned rules. 
Second, the fitness function should provide differential 
payoff so that alternative candidate solutions can be 
ranked. It should not present a "needle-in-a-haystack" 
problem in which only the final solution is assigned a 
positive fitness. In the task described here, the 
performance measure is based on differential payoff for 
different behaviors of the robot. In the navigation 
experiments, getting to the goal quickly yields the 
highest payoff while behaviors that result in collisions 
with an obstacle receive the lowest payoff. 

• Genetic Operators. Many early studies of genetic 
algorithms employed simple syntactic operators to alter 
candidate solutions, such as simple crossover and 
random mutation. However, some recent studies have 
used more heuristic operators that make more directed 
changes based on the learning agent's experience. For 
example, some genetic classifier systems use triggered 
operators such a creating a new rule to cover a novel 
situation (Booker, 1988). In SAMUEL, we use 
generalization and specialization operators that are 
triggered by specific conditions relating the measured 
utilities of individual rules and the outcome of the task. 
These may be viewed as Lamarckian forms of evolution 
(Grefenstette, 1991), and show that artificial evolution 
need not proceed along purely Darwinian lines. 

• Hybrid Approaches. Finally, it is often useful to use 
evolutionary methods in concert with other methods that 
have complementary strengths. The strength of an 
evolutionary algorithm is in rapidly identifying the most 
promising regions of a complex search space. 
Evolutionary methods are less efficient at fine-tuning 
candidate solutions. Therefore, a natural hybrid is to use 
an efficient local optimization method to improve the 
final solutions found by the evolutionary system 
(Grefenstette, 1987). 

Another promising hybrid approach is to combine the 
SAMUEL learning method with a case-based module, to 
provide a way to dynamically modify the simulation 
model based on the robot's experience with the external 
environment. The next section covers this approach in 
more detail. 

4.1     ANYTIME LEARNING 

The basic characteristics of anytime algorithms are: (1) 
the algorithm can be suspended and resumed with 
negligible overhead, (2) the algorithm can be terminated 
at any time and will return some answer, and (3) the 
answers returned improve over time. However, our use 
of the term anytime learning is meant to denote a 
particular way of integrating execution and learning. 
The basic idea is to integrate two continuously running 
modules: an execution module and a learning module 
(see Figure 3). The agent's learning module contains a 
simulation model with parameterized aspects of the 
domain. It continuously tests new strategies against the 
simulation model to develop improved strategies, and 
updates the knowledge base used by the agent (in the 
execution system) on the basis of the best available 
results. The execution module controls the agent's 
interaction with the environment, and includes a monitor 
that can detect changes in the environment, and 
dynamically modify the parameter ranges of the 
simulation model (used by the learning module) to reflect 
these changes. When the simulation model is modified, 
the learning process is restarted on the modified model. 
The learning system is assumed to operate indefinitely, 
and the execution system uses the results of learning as 
they become available. 

EXECUTION 
SYSTEM 

Environment 

Monitor 

OFF-LINE 
SYSTEM 

Learning 
Method 

Figure 3: Anytime Learning System 

In short, this approach uses an existing simulation model 
as a base on which strategies are learned, and updates the 
parameters of the simulation model as new information is 
observed in the external environment in order to improve 
long-term performance. 

One important aspect of the anytime learning model 
concerns the criteria for deciding when the external 
environment     has     changed.      In     our     current 



implementation, the monitor compares measurable 
aspects of the environment with the parameters provided 
by the simulation design. In addition, the monitor might 
also detect differences between the expected and actual 
performance of the current strategy in the environment. 
For example, if the performance level degrades in the 
environment, that is a sign that the current strategy is no 
longer applicable. If the performance of the current 
strategy improves unexpectedly, it may indicate that the 
environment has changed, and that another strategy may 
perform even better. 

While the anytime learning approach could be used 
merely to fill in particular values for parameters that are 
initially unknown, it is especially useful in changing 
environments. Each observed set of values for the 
parameters can be treated as an environmental case. The 
learning system can store strategies for different cases, 
indexed by the environmental parameters that 
characterize that case. When the environment changes, 
the set of previous cases can be searched for similar 
cases, and the corresponding best strategies can be used 
as a starting point for the new case. 

Our particular instantiation of anytime learning uses 
SAMUEL (Grefenstette and Cobb, 1994; Grefenstette et 
al., 1990; Schultz, 1991). While the basic ideas of 
anytime learning could be applied using a number of 
other learning methods, especially other reinforcement 
learning methods, SAMUEL has some important 
advantages for this approach. In particular, SAMUEL can 
learn rapidly from partially correct strategies and with 
limited fidelity simulation models (Schultz and 
Grefenstette, 1990; Ramsey et al., 1990). More 
importantly for this discussion, the genetic algorithms 
provide an effective mechanism for modifying previously 
learned cases. When an environmental change is 
detected, the genetic algorithm is restarted with a new 
initial population. This initial population can be 
"seeded" with the best strategies found for previous 
similar cases. We call this case-based initialization of 
the genetic algorithm. Our studies have shown that by 
using good strategies from several different past cases as 
well as exploratory strategies, default strategies and 
members of the previous population, the genetic 
algorithm can respond effectively to environmental 
changes, and can also recover gracefully from spurious 
false alarms (i.e., when the monitor mistakenly reports 
that the environment has changed). 

A case-based anytime learning system can be viewed as 
one that starts with an underspecified model of its world 
(the original parameterized quantitative model), and then 
learns, on the basis of experience, a set of fully specified 
models that correspond to the environmental cases it 
actually encounters. The power of this approach derives 
from the cooperative effort between designer and robot. 
The designer provides a rich sets of models that can be 
used for learning, and the robot selects the appropriate 
models from that (possibly infinite) set of models. Each 
partner   makes   a   significant   contribution    to   the 

knowledge acquisition process. 

Preliminary experiments have shown the effectiveness of 
anytime learning in a changing environment 
(Grefenstette and Ramsey, 1992; Ramsey and 
Grefenstette, 1993). The task used in these experiments 
was a cat-and-mouse game in which one robot had to 
track another without being detected. The changing 
environmental parameters included the speed 
distribution of the target agent and the maneuverability 
of the target agent, as well as environmental variables 
that were in fact irrelevant to the performance of the 
task. The most promising aspect of these results is that, 
within each time period (epoch) after an environmental 
change, the case-based anytime learning system 
consistently showed a much more rapid improvement in 
the performance of the execution system than a baseline 
learning system (with its monitor disabled). Case-based 
initialization allows the system to automatically bias the 
search of the genetic algorithm toward relevant areas of 
the search space. More recent experiments show that the 
longer the epochs last and the longer the system runs and 
gathers a base of experiences of different environmental 
cases, the greater the expected benefit of case-based 
anytime learning is. 

5   SUMMARY 
The SAMUEL system has been used to learn behaviors 
for controlling simulated autonomous underwater 
vehicles (Schultz, 1991), missile evasion, and other 
simulated tasks. This paper reports some early tests of 
the learned knowledge on a real physical system. For 
more details of the SAMUEL system, see (Grefenstette 
and Cobb, 1994). 

Future work will continue examining the process of 
building robotic systems through evolution. We want to 
know how multiple behaviors that will be required for a 
higher level task interact, and how multiple behaviors 
can be evolved simultaneously. We are also examining 
additional ways to bias the learning both with initial rule 
sets, and by modifying the rule sets during evolution 
through human interaction. Other open problems include 
how to evolve hierarchies of skills and how to enable the 
robot to evolve new fitness functions as the need for new 
skills arises. 
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